Failure mechanism of FBGA solder joints in memory module subjected to harmonic excitation
نویسندگان
چکیده
This paper investigates the failure mechanism of Fine-pitch Ball Grid Array (FBGA) solder joints of memory modules due to harmonic excitation by the experiments and the finite element method. A finite element model of the memory module was developed, and the natural frequencies and modes were calculated and verified by experimental modal testing. Modal damping ratios are also obtained and used in the forced vibration analysis. The experimental setup was developed to monitor resistance variation of FBGA solder joints due to the harmonic excitation under Joint Electron Devices Engineering Council (JEDEC) standard service conditions. Experiments showed that the failure of the solder joints of the memory module under vibration mainly occurs due to resonance. Forced vibration analysis was performed to determine the solder joints having high stress concentration under harmonic excitation. It showed that failure occurs due to the relative displacement between PCB and package and solder joints are the most vulnerable part of the memory module under vibration. It also showed that cracked solder joints in the experiments match those in the simulations with the highest stress concentration. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Effect of solder pads on the fatigue life of FBGA memory modules under harmonic excitation by using a global-local modeling technique
0026-2714/$ see front matter 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.microrel.2013.06.018 ⇑ Corresponding author. Address: PREM, Department of Mechanical Engineering, Hanyang University, 17, Haengdang-dong, Seondong-gu, Seoul 133-791, Republic of Korea. Tel.: +82 2 2220 0431; fax: +82 2 2292 3406. E-mail address: [email protected] (G. Jang). Yusuf Cinar , Jinwoo J...
متن کاملABSTRACT Title of Dissertation: HARMONIC AND RANDOM VIBRATION DURABILITY INVESTIGATION FOR SAC305 (Sn3.0Ag0.5Cu) SOLDER INTERCONNECTS
Title of Dissertation: HARMONIC AND RANDOM VIBRATION DURABILITY INVESTIGATION FOR SAC305 (Sn3.0Ag0.5Cu) SOLDER INTERCONNECTS Yuxun Zhou, Doctor of Philosophy, 2008 Dissertation directed by: Professor Abhijit Dasgupta Department of Mechanical Engineering Vibration loading is commonly encountered during the service life of electronic products. However, compared to thermal cycling durability, vibr...
متن کاملFailure Modes of Flip Chip Solder Joints Under High Electric Current Density
The failure modes of flip chip solder joints under high electrical current density are studied experimentally. Three different failure modes are reported. Only one of the failure modes is caused by the combined effect of electromigration and thermomigration, where void nucleation and growth contribute to the ultimate failure of the module. The Ni under bump metallization–solder joint interface ...
متن کاملEffect of Shield-Can on Dynamic Response of Board-Level Assembly
In order to protect the electronic components of electronic devices on a printed circuit board (PCB) against electromagnetic radiation, a conductive shield-can or box is normally attached to the PCB covering the electronic components. In particular, handheld electronic devices are prone to be subjected to drop impact. This means that the products would experience a significant amount of out-of-...
متن کاملThermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data
Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microelectronics Reliability
دوره 52 شماره
صفحات -
تاریخ انتشار 2012